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ABSTRACT

Sommeria and Deardorff (1977) have derived turbulence closure relations which should be important
to cloud modeling. To obtain these relations they have hade to invoke some analytical approximations and
data from numerical statistical experiments. In the present paper, the analytical approximations have been
eliminated. Somewhat surprisingly, results obtained here agree exactly with those obtained by the previous

authors. Other new and useful relations are presented.

1. Introduction

In the immediately preceding paper Sommeria and
Deardorff (1977, henceforth SD) have derived relations
which should have major significance for both subgrid-
scale modeling and ensemble-mean modeling of clouds
in the atmospheric boundary layer. A Gaussian distri-
bution of the conserved variables, liquid water potential
temperature and total water specific humidity was
assumed [and therefore differs from work by Manton
and Cotton (1976) where, otherwise, some of the basic
ideas are established] and relations necessary to close
models which include clouds were derived. In their
derivation, analytical approximations and numerical
statistical experiments were invoked to establish the
final result which presumably would also be
approximate.

When the present writer first saw the Sommeria and
Deardorff manuscript, he had been working along
similar lines in an attempt to extend the Princeton
ensemble-mean or second-moment turbulence model?
(Mellor, 1973 ; Mellor and Yamada, 1974; Yamada and
Mellor, 1975) so that it would properly account for
clouds. Much of this work was anticipated by SD.
However, a way had been found to eliminate the afore-
mentioned analytical approximations and this is pre-
sented here; somewhat surprisingly the final result is
identical to that obtained by SD. Their findings are
therefore found to be exact (approximations invoked
by them apparently introduce errors which are exactly
self-cancelling) and methodology is established which
may be useful in the investigation of non-Gaussian
distributions, consideration of which may further im-

1 Supported by the U. S. Air Force Office of Scientific Research
under Grant AFOSR 75-2756.

2 Unfortunately, the term “second-order model” has gained
more acceptance.

prove ensemble-mean models, for example. Other
useful relations are also obtained here.

It should be noted that, whereas these relations can
improve subgrid-scale modeling which had previously
demonstrated impressive predictive power (e.g., Dear-
dorff, 1973 ; Sommeria, 1976), the relations are probably
more essential to the inclusion of clouds in ensemble-
mean models. The latter, of course, are more dependent
on empirical modeling than the former but require much
less resolution in space and time such that they can be
included in current general circulation models. In such
an application a probability distribution of liquid water,
for example, would represent the probability of the
spacial distribution in a horizontal grid cell of the order
of (100 km)®.

2. Analysis

We adopt the nomenclature of SD. We note that it
is a straightforward extension of previous dry models
to write model equations for the mean and variances
of the conserved variables, liquid water potential
temperature B

6 L
Oi=0—— —q
Cp

(1)

and total water specific humidity
w=qtq, @
where, neglecting pressure fluctuations,
p 0.285 6
()
? T

is the potential temperature, T the absolute tempera-
ture, ¢; the liquid-water specific humidity, ¢ the water
vapor specific humidity, g, the total water specific
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humidity, L the latent beat of vaporization and ¢, the
specific heat at constant pressure. The means of each
quantity are denoted by overbars such that g, is the
mean total water specific humidity and primes denote
fluctuating quantities such as g,=q,—g». As stated
previously, it is presumed that predictive equations are
available for gu, q2, 83, 62 and g, We require §; and
other useful statistical quantities involving ¢, to be
discussed below.

The detailed, local condensation physics is assumed
to be given by

1= {gv—q)H (qu—q5), 4
where ¢, is the saturation specific humidity and
6, <0
H(x)=
1, x>0

is a Heaviside function. Thus this “fast condensation”
model assumes no supersaturation; when ¢»>gs, §=¢..
Note that, were it not for the Heaviside function, that
is, if ¢1= gw—q,, then we would have §;= g, — G-

Following SD, we now assume a Gaussian or binormal
distribution for 6; and ¢, i.e.,

1
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where 05,=0,%, ¢2,=¢7 and r=6q,,/0610 4. We now seek
expressions for the cloud fraction

_ / / H(qu—g:)Cdgudt; ©)

and the mean liquid water specific humidity

g / / (@o—g)H(ge—gGdgudts.  (7)

With the help of a truncated Taylor series and (1)
and (3), it is p ossible to write

_ T, L
gs(T)=q«;l+q|sl.T[T’_Tl:l:qgl_'_qH,T[’é‘el_*"—'ql], (8)
Cp

where

B T
Ga=q(T), Tl=30 (9a,b)
and
3qs Lg,
qwz<i> —0.622—2 (90)
0T/ rop, R, T

where the latter is the Clasius-Clapeyron equation. Now
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for g,> ¢, and ¢;= g, —¢, we obtain
v —g:= aAG+ ag,,— b6, (10)
from (8) after some algebra, where
L -1
aE(l-}-q,l,T——) , (11a)
Cy
T
b=a—qu,r, (11b)
]
AG=quw—Gq,1. (llc)

When (10) is inserted into (6) and (7) the following
transformations are suggested :

aq,=t+s, bb=t—s (12a,b)
or conversely
t=(aq,+80)/2, s=/(oq,—b6))/2.
Therefore, (6) and (7) may be written
R=2 / / G(s,p)dtds, (13)
—alq/2

Ji=2 / j aAq+25)G (s,)dds, (14)
—aAq/2 v —m

where G(sf) results from substituting (12a,b) into
Eq. (5).* The integration with respect to ¢ may be
executed to give

G(s)=2 f G(s,5)dt

1 s?
= exp[ ], (15)
Npyy 204?
where
0.2= 52 = 1(a%q 2~ 2abgubi+b67). (16)

Thus, we obtain the comfortable result that a variable
comprised of a linear combination of two other
binormally distributed variables is also normally
distributed.

We are finally left with

R= / G(s)ds
—alg/2

4= / (aAg4-25)G(s)ds
—alAG/2

3 This yields
G(s,t) =[2wabosiog(1—r)¥ Tt exp[— 42— Bt—CJ,
where
A=(1—) [ Qa2 '~ r(aboguoer) 4+ (2b%a5) 1],
B=(1—r)[(@oqn) ™~ Bog) ],
C= (1— ) [ (2a%2,) - (aboguon) 1 (26%63,)1].
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which may now be integrated to give

[} o
= erfl — ) |,
2 V2
1 2.
—q—’~Rol+~e~<p[—9‘—], (18)
205 T 2
where .
aAJ
1= (19)
20,

We now note that the above expressions are identical
to the SD Egs. (16) and (20) (the former equation ob-
tained with the help of approximations which ap-
parently introduce self-cancelling errors) if we observe
that e=X; and 40.2/a®*=0:2

3. Further closure relations

For subgrid-scale models or ensemble mean models
it is also necessary to obtain relations for f)g;, g, and
u,q, where u;= (u',v’;w"). The first two quantities are
obtained as a rather straightforward extension of the
previous analysis. The results are

' bgif= —agig=40:?R. (20)

We also add the liquid water variance

2]R+£_;_Qn exp[ f%j 1)

as a possibly useful additional quantity.

To obtain u,q, it is necessary to assume that u is
also normally distributed such that

G(s,ui)=
270,0,:(1 —r2)t
—1 [ s? sui w7
xew| — [t 2] )
“L1—r2u 202 oyoui 205 .
where
auis;? . [no summation on ], (23a)
swe 1 T
Teui= "= (aqwui —bGws). (23b)
GsTui Za'saua
The result of carrying out the integration
’lh:qz / / (GAQ‘I—ZS)u;é(S,u;)dmds
. —aAq/2
is
wigr=(auign—bubB)R. (24)
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4. Discussion

Although (20) and (21) were not obtained by SD—
and the former relation should be required by all
models—it appears that (24) has also been anticipated

- by them. It will be noted that (24) is a rather simple

interpolation between the dry limit g;=0 when R=0
and ' the asymptotic moist limit ¢,=agq,—bf, when
R — 1. This appears to be the nature of the assumption

- made by SD.

Although major analytical approximations have been
eliminated, an @ priori source of error can be identified
with the fact that a Gaussian distribution for 8; and ¢,
yields a finite probability that they be negative. How-

ever, thisis not a practical problem so long as 072 /87 and
q2/g2 are small. In this connection one notes that in

the limit, g,=g.,">=0 the cloud fraction given by (17)
does not limit identically to zero. However, assuming

typical values for Ag= —g, and 6,7, one finds that R is
extremely small. Nevertheless in the application of this
type of approach to ensemble mean models, probability
distributions other than Gaussian should be examined.
On the other hand, use of the present relations should
undoubtedly be superior to models which neglect
variances in ¢; and which necessarily must require
that §1=Gw—Gs.

Such models would predict either clear sky or stratus.
Aside from dynamical effects of including the terms

48, q4q, and g, in the dynamical turbulent moment
equations, it should be possible to relate cloud types

to R, §: and ¢ For example, stratus would imply
§:>0 and R=1.0, whereas scattered cumuli would
imply §;>0 but R<1.0; alternately, the use of §; and

¢2 might be convenient variables to quantitatively
classify clouds. :
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